

Qualitätsmanagement-Handbuch

XII Kalibrieren von Induktivitäten und Kapazitäten

XII.1 Kalibrierung von Kapazitäten

XII.1.1 Direkte C-Messung an einem LCR- oder Kapazitätsmessgerät

Zur Messung von Impedanzen dienen üblicherweise Messbrücken wie Hewlett Packard 4284A, die an den zur Verfügung stehenden Bezugsnormalen in der Z-Ebene kalibriert sind. Dabei wird sowohl die gesamte |Z|-Betrags-Achse (zwischen 50 m Ω bis 150 M Ω), als auch die Frequenzachse (zwischen 100 Hz bis 1 MHz), des zweidimensionalen "Betriebsparameterfeldes" dieser Geräte bei der Kalibrierung betrachtet, so dass ein Informationssatz über die Gerätecharakteristik erstellt werden kann, um beispielsweise die Konformität mit den Herstellerspezifikationen im Betriebsbereich zu erklären.

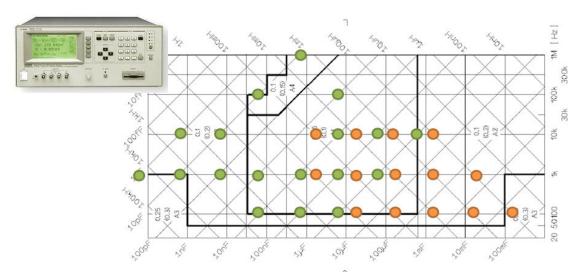
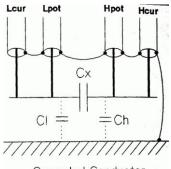


Bild XII.1.1 – Stützpunkte der Kalibrierung von LCR-Messbrücken: Die Festwerte (grün=Kapazitäten und orange= Induktivitäten) decken den Betriebsbereich der Impedanz |Z| zwischen 50 m Ω bis 150 M Ω sowie der Frequenz f zwischen 100 Hz bis 1 MHz a. in jedem spezifizierten Bereich liegt mindestens 1 Messpunkt

XII.1.1.1 Messverfahren

Solche Messbrücken sind üblicherweise mit der entsprechenden Messleitung, z.B. HP16048A, 1 Meter, ausgerüstet. Es handelt sich hierbei um einen Viertoranschluss (Hp – Lp – Hc – Lc) geschirmter Einzelleitungen mit BNC-Stecker. Durch verschiedene z.T. eigens konstruierte Adapter sind Aufnahmen unterschiedlicher Kapazitäten möglich. Es stehen BNC-T-Stücke zum zweipoligen Übergang, BNC-Banane-Stecker, BNC-Kupplungen, und spezielle Klemmlaschen mit BNC-Buchsen (s.Bild XI.1b) zur Verfügung. Um Streukapazitäten so gering wie möglich zu halten müssen die Schirme der Messleitungen in der Nähe der Anschlüsse miteinander verbunden (Bild XII.2) und ungeschirmte Leitungsstrecken so kurz wie möglich gehalten werden. Falls Herstellerangaben andere Verfahrensweisen vorschlagen werden diesen Angaben beachtet und sind ggf. im Kalibrierschein vermerkt.


Nach einer angemessenen Betriebszeit von z. B. 30 Minuten muss zunächst die Offset-Korrektur am Gerät durchgeführt werden. Dazu wird mit "CORRECTION OPEN und "CORRECTION SHORT" die Null-Korrektur (Kurzschluss) aktiviert. Die Leerlauf-Korrektur erfolgt zusammen mit dem jeweiligen Messadapter und offenen Enden auf isolierter Unterlage (z.B. wie Bild XI.1b). SHORT wird mit Kurzschlussbrücke über den Enden des Adapters gemessen (Kap. XII.2, Bild XII.3b). Die Offset-Korrektur sollte vor Beginn der Messung durchgeführt werden. Bei Kapazitäten <1000pF muss -um eine Aussage über Reproduktion der Ergebnisse zu gewinnen- sogar kurz vor jedem Verbinden des

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.25	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XII Kalibrieren von Induktivitäten und Kapazitäten	1

Qualitätsmanagement-Handbuch

Kalibriergegenstandes bzw. bei jedem Wechsel der Testfrequenz die Korrektur erneut aktiviert werden.

Grounded Conductor
Bild XII.2 Anschluss an HP4284A

Beispiel für LCR-Messgerät Hewlett Packard 4274A (Parametereinstellung für optimale Ergebnisse und Reproduzierbarkeit):

 $FUNCTION \ C_p - R_p \\ Messung \ im \ Schaltkreismodus \ C-Parallel$

INT LONG Integrationszeit maximal AVG 16 Integrationszeit maximal Mittelwertbildung mit n=16

ALC ON Automatisches Regeln des Messpegels über Frequenz

CORRECTION OPEN ON Offset-Korrektur nach offen-Messung
CORRECTION SHORT ON
Level = 1 V Offset-Korrektur nach Kurzschluss-Messung
optimaler Testpegel des Oszillators an der Brücke

Level = 50 mV $C_{1 \text{ kHz}} \ge 10 \text{ µF}$

 $C_{10 \text{ kHz}} \ge 1 \text{ } \mu F$

Der maximal mögliche Strom (bei $|Z| \le 15 \Omega$) der Messbrücke bzw. am Standard erfordern die Reduktion der Messspannung und führen

zu einer erhöhten Brückenunsicherheit.

Level = 5 V $C_{100Hz} < 5 \text{ nF}$

 $C_{1kHz} < 500 \text{ pF}$ $C_{10kHz} < 50 \text{ pF}$

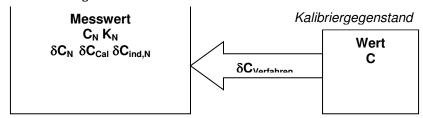
Impedanzen $|Z| > 500 \text{ k}\Omega$ werden mit höherer Messspannung

gemessen

Frequenz 100 Hz, 1 kHz, 10 kHz

Als Messwert wird schließlich der Mittelwert aus mehreren Einzelmessungen erfasst. Schwankungen des Messwertes fließen als Typ A Unsicherheiten in die Messunsicherheitsbilanz ein.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.25	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XII Kalibrieren von Induktivitäten und Kapazitäten	2


Qualitätsmanagement-Handbuch

XII.1.1.2 Messunsicherheitsbilanz

Berechnung der kleinsten angebbaren Messunsicherheit des in Kapitel XII.1.1.1 beschriebenen Verfahrens.

Skizze des Messaufbaus:

LCR Messgerät

Größen und Symbole siehe Abs. XI.2.2 mit

Gesuchte Größe:

C Wert der zu messenden Kapazität

 $\delta C_{\it Verfahren}$

Die verfahrensbedingten Einflüsse (siehe XI.1.2) sind üblicherweise bereits im Anteil δC_N als Spezifikation enthalten und müssen dann nicht gesondert berücksichtigt werden.

Modellgleichung:

$$C = K_N C_N + \delta C_N + \delta C_{Cal} + \delta C_{Verfahren} + \delta C_{ind}$$

Das Modell der Messung kann somit als Unterbilanz der Gleichung aus Abs. XI.2.2 verstanden werden

Für die dem Ergebnis beizuordnende Standardmessunsicherheit ergibt sich demnach

$$u^{2}(c) = u^{2}(c_{ind}) + u^{2}(\delta c_{N}) + u^{2}(\delta C_{Cal}) + u^{2}(\delta c_{Verfahren}) + u^{2}(\delta c_{ind})$$

Tabellarische Darstellung der Messunsicherheitsbilanz:

Größe X _i	Schätzwert x _i	Standard- messunsicherheit <i>u(x_i)</i>	Verteilung	Sensitivitäts- koeffizent c _i	Unsicherheits- beitrag <i>u_i(y)</i>
С	$\overline{c_{ind}}$	$\frac{s(C)}{\sqrt{n}}$	Normal A	1	$u(c_{ind})$
K_{N}	1				
$\delta \mathcal{C}_{\scriptscriptstyle Cal}$	0	$U(\delta C_{Cal})/k$	Normal	1	$u(\delta c_{Cal})$
$\delta C_{\scriptscriptstyle N}$	0	$\Delta(\delta C_N)/\sqrt{3}$	Rechteck	1	$u(\delta c_N)$
$\delta \mathcal{C}_{\scriptscriptstyle Verfahren}$	0	$\Delta(\delta C_{Verfahrenl})/\sqrt{3}$	Rechteck	1	$u(\delta\!c_{{\scriptscriptstyle Verfahren}})$
$\delta \mathcal{C}_{ ext{ind}}$	0	$\Delta(\delta C_{ind})/\sqrt{3}$	Rechteck	1	$u(\delta c_{ind})$
С					<i>u</i> (<i>c</i>)

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.25	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XII Kalibrieren von Induktivitäten und Kapazitäten	3

Qualitätsmanagement-Handbuch

Gemäß DKD-3:2002 Abschnitt4 ergibt sich aus der Modellgleichung für die dem Ergebnis *C* beizuordnende relative erweiterte Messunsicherheit (k=2):

$$W_{rel}(\Delta C) = 2 \frac{u(\Delta c)}{C_{\scriptscriptstyle N}}$$
 (bezogen auf den Messwert)

Die Zahlenwerte der Berechnungen für die einzelnen Messgrößen sind z.B. der Tabelle

http://dmsserver/technik/Messunsicherheiten/QMH-Tabellen/Messunsicherheiten-Tabellen/Messunsicherheiten-Tabellen/Messunsicherheiten-Direktmessung.XLS

zu entnehmen.

XII.1.2 C-Kalibrierung im Substitutionsverfahren

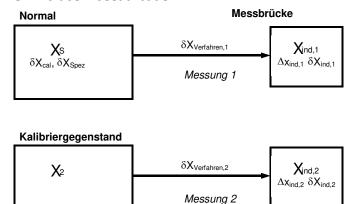
XII.1.2.1 Messverfahren

Im Substitutionsverfahren können mit den zur Verfügung stehenden Kapazitätsnormalen (vgl. Abs. XI.1) andere Standards **gleicher Anschlussebene** verglichen und kalibriert werden. Dazu wird mit einem hochauflösenden Präzisionsmessgerät wie Hewlett Packard 4284A (Bild XII.1) der Wert des Kalibriergegenstandes mit dem des Normals verglichen. Dabei müssen die Messungen unmittelbar hintereinander erfolgen und der gleiche Messaufbau (Messparameter) verwendet werden (Kabel, Offset-Korrektur, Anzeigeparameter). Die Messbrücke ist so einzustellen (Messpegel, Frequenz) und anzuschließen (s.a. XI.1), dass die Werte aus dem Kalibrierschein des Bezugsnormals verwendet werden können. Der Referenzwert des Normals wird ebenfalls dem Kalibrierschein entnommen. Bei dieser Messmethode dient die Messbrücke als reines Anzeigeinstrument (Transferglied), so dass Abweichungen aus dem Messanschluss und der Brücke selbst minimiert werden. Die Auswertung der Messwerte an der Messbrücke geschieht durch Mittelung über mehrere Messungen z. B. im Modus "INTEGR LONG" und der Aktivierung der "AVERAGE" Funktion. Die Anzeige sollte im Rahmen der gewünschten Messunsicherheit stabil sein, um eine gültige Aussage über den Messwert treffen zu können.

Bestimmt wird zunächst der Anzeigewert ($X_{ind,1}$) bei Anschluss des Bezugsnormals (Wert X_1 aus dem Kalibrierschein) und daraus die Abweichung der Anzeige vom Kalibrierwert ($\Delta X_{ind,1} = X_{ind,1} - X_1$). Dabei wird angenommen, dass diese Abweichung im betreffenden (sehr kleinen) Messbereich immer konstant ist. Unmittelbar danach erfolgt die Messung am Kalibriergegenstand ($X_{ind,2}$). Durch Vergleich der beiden angezeigten Werte kann durch die Formel

$$X_1 - X_{ind,1} + X_{ind,2} = X_{ind,2} - \Delta X_{ind,1} = X_2$$

der tatsächliche Wert des Kalibriergegenstandes angegeben werden.


Als Messwert wird schließlich der Mittelwert aus mehreren Einzelmessungen erfasst. Schwankungen der Messwerte fließen als Typ A Unsicherheiten in die Messunsicherheitsbilanz ein.

Qualitätsmanagement-Handbuch

XII.1.2.2 Messunsicherheitsbilanz

Skizze des Messaufbaus:

Vorgegebene bzw. abgelesene Größen:

X_s Kalibrierwert des Normals.

X₂ Wert des Kalibriergegenstandes

 $X_{ind,1}$ Abgelesener Wert an der Brücke bei Messung der Referenz

 $X_{ind,2}$ Abgelesener Wert bei Messung des Kalibriergegenstandes

Gesuchte Größe:

 X_2 Wert des Kalibriergegenstandes

Es kann gezeigt werden, dass die Werte im Substitutionsverfahren denen der Direktmessung (vgl Abs. XI.1.2) entsprechen, wenn von einem ideal reproduzierbaren Messobjekt ausgegangen wird. Die Zahlenwerte dieser Berechnungen für die einzelnen Messgrößen sind der Tabelle

• http://dmsserver/technik/Messunsicherheiten/QMH-Tabellen/Messunsicherheiten-Tabellen/Messunsicherheiten-Und-Kapazitaetsmessgeraeten.xls

zu entnehmen, die Ergebnisse sind im Leistungsnachweis aufgeführt.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.25	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XII Kalibrieren von Induktivitäten und Kapazitäten	5

XII.2 Kalibrierung von Induktivitäten

XII.2.1 Direkte L-Messung an einem LCR-Messgerät

Ähnlich wie die Kalibrierung von Kapazitäten erlauben die Präzisionsmessgeräte wie Hewlett Packard 4284A die direkte Messung von Induktivitäten.

XII.2.1.1 Messverfahren

Analog zu dem in Kapitel XII.1.1.1 beschriebenen Messverfahren für Kapazitäten werden Induktivitäten über das zugehörige Messkabel (z.B. Hewlett Packard 16048A) im Vierpolanschluss an der Messbrücke gemessen. Über die zur Verfügung stehenden Messaufnehmer (BNC-T-Stücke zum zweipoligen Übergang, BNC-Banane-Stecker, BNC-Kupplungen, spezielle Klemmlaschen mit BNC-Buchsen) werden die zu vermessenden Induktivitäten adaptiert. Zuvor muss die OFFSET-Korrektur an der Messbrücke durchgeführt werden. Dazu ist ein Kurzschluss über dem jeweiligen Messadapter einzufügen um danach über CORRECTION SHORT die Null-Messung durchführen zu können. Als Kurzschluss dienen wiederum selbstangefertigte Bauteile (Kurzschluss über Banane, BNC, Klemmschuh, s. Bild XII.3a bis c) um möglichst wenige zusätzlichen Leitungslängen in den zu nullenden Messaufbau einzufügen.

auch 2-polig an BNC-T-Stück

Bild XII.3a Kurzschluss koaxial, ggf. Bild XII.3b Kurzschluss an Messschuh

Bild XII.3c Kurzschluss über Banane

Beispiel für LCR-Messgerät Hewlett Packard 4284A (Parametereinstellung für optimale Ergebnisse und Reproduzierbarkeit)::

FUNCTION L_s – R_s Messung im Schaltkreismodus L-Serie

Integrationszeit maximal INT LONG Mittelwertbildung mit n=16 AVG 16

ALC ON Automatisches Regeln des Messstroms über Frequenz

CORRECTION SHORT ON Offset-Korrektur nach Kurzschluss-Messung **CORRECTION OPEN ON** Offset-Korrektur nach Offen-Messung

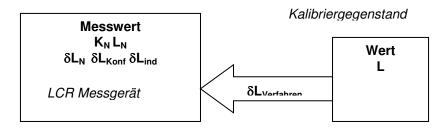
Level an der Brücke:

Die geringste Messunsicherheit wird von HP im Pegelbereich 0,3 V bis 1 V angegeben. Die Stromeinstellungen ergeben sich in Abhängigkeit von gemessener Induktivität und Frequenz z.B. gemäß unten stehender Tabelle:

100Hz		1 kHz		10 kHz	
1 mH ≤ L _{100Hz} < 30 mH	50 mA	100 μH ≤ L _{1kHz} < 3 mH	50 mA	$100 \ \mu H \le L_{10kHz} < 0.3 \ mH$	50 mA
$30 \text{ mH} \le L_{100Hz} < 80 \text{ mH}$	20 mA	$3 \text{ mH} \leq L_{1kHz} < 8 \text{ mH}$	20 mA	$0.3 \text{ mH} \le L_{10kHz} < 0.8 \text{ mH}$	20 mA
$80 \text{ mH} \le L_{100Hz} < 0.3 \text{ H}$	5 mA	$8 \text{ mH} \leq L_{1kHz} < 30 \text{ mH}$	5 mA	$0.8 \text{ mH} \le L_{10kHz} < 3 \text{ mH}$	5 mA
$0.3 \text{ H} \le L_{100\text{Hz}} < 0.8 \text{ H}$	2 mA	$30 \text{ mH} \le L_{1kHz} < 80 \text{ mH}$	2 mA	$3 \text{ mH} \leq L_{10kHz} < 8 \text{ mH}$	2 mA
$0.8 \text{ H} \le L_{100Hz} < 1 \text{ H}$	500 μΑ	$80 \text{ mH} \le L_{1kHz} < 0.3 \text{ H}$	500 μΑ	$8 \text{ mH} \le L_{10kHz} < 30 \text{ mH}$	500 μΑ
		$0.3 \text{ H} \le L_{1kHz} < 0.8 \text{ H}$	200 μΑ	30m H ≤ L _{10kHz} < 80 mH	200 μΑ
		$0.8 \text{ H} \le L_{1kHz} < 1 \text{ H}$	50 μA	$80 \text{ mH} \le L_{10kHz} < 0.3 \text{ H}$	50 μΑ
				$0.3 \text{ H} \le L_{10kHz} < 0.8 \text{ H}$	20 μΑ
				$0.8 \text{ H} \le L_{10kHz} < 1 \text{ H}$	5 μΑ

Als Messwert wird schließlich der Mittelwert aus mehreren Einzelmessungen erfasst. Schwankungen des Messwertes fließen als Typ A Unsicherheiten in der Messunsicherheitsbilanz ein.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.25	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XII Kalibrieren von Induktivitäten und Kapazitäten	6



Qualitätsmanagement-Handbuch

XII.2.1.2 Messunsicherheitsbilanz

Berechnung der kleinsten angebbaren Messunsicherheit des in Kapitel XII.2.1.1 beschriebenen Verfahrens.

Skizze des Messaufbaus:

Größen und Symbole siehe Abs. XI.4.2 mit Gesuchte Größe:

L Wert der zu messenden Induktivität

 $\delta L_{Verfahren}$ Die verfahrensbedingten Einflüsse (siehe Abs. XI.3.2) sind üblicherweise bereits im

Anteil δL_N als Spezifikation enthalten und müssen dann nicht gesondert berücksichtigt

werden

Modellgleichung:

$$L = K_{N}L_{N} + \delta L_{N} + \delta L_{Cal} + \delta L_{Verfahren} + \delta L_{ind}$$

Das Modell der Messung kann somit als Unterbilanz der Gleichung aus Abs. XI.4.2 verstanden werden

Für die dem Ergebnis beizuordnende Standardmessunsicherheit ergibt sich daraus:

$$u^{2}(L) = u^{2}(l_{ind}) + u^{2}(\partial l_{cal}) + u^{2}(\partial l_{N}) + u^{2}(\partial l_{Verfahren}) + u^{2}(\partial l_{ind})$$

Tabellarische Darstellung der Messunsicherheitsbilanz:

Größe <i>X</i> _i	Schätzwert x _i	Standard- messunsicherheit $u(x_i)$	Verteilung	Sensitivitäts- koeffizent c _i	Unsicherheits- beitrag <i>u_i(y)</i>
L	$\overline{l_{ind}}$	$\frac{s(L)}{\sqrt{n}}$	Normal A		$u(l_{ind})$
K_N	1				
$\delta L_{\it Cal}$	0	$U(\delta L_{Cal})/k$	Normal	1	$u(\delta l_{Cal})$
δL_N	0	$\Delta(\delta L_N)/\sqrt{3}$	Rechteck	1	$u(\delta l_N)$
$\delta \! L_{ ext{Verfahren1}}$	0	$\Delta(\delta L_{Verfahrenl})/\sqrt{3}$	Rechteck	1	$u(\delta l_{\mathit{Verfahren}})$
δL_{ind}	0	$\Delta(\delta L_{ind})/\sqrt{3}$	Rechteck	1	$u(\delta l_{ind})$
L					u(L)

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.25	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XII Kalibrieren von Induktivitäten und Kapazitäten	7

Qualitätsmanagement-Handbuch

Die Zahlenwerte der Berechnungen für die einzelnen Messgrößen sind z. B. der Tabelle

• http://dmsserver/technik/Messunsicherheiten/QMH-Tabellen/Messunsicherheiten-Tabellen/Messunsicherheiten-Tabellen/Messunsicherheiten-Direktmessung.XLS

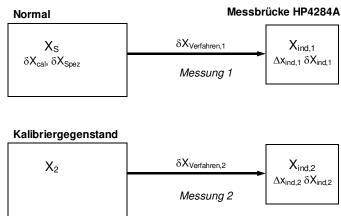
zu entnehmen.

I.2.2 L-Kalibrierung im Substitutionsverfahren

XII.2.2.1 Messverfahren

Im Substitutionsverfahren können analog zu Kapitel XII.1.2.1 mit den zur Verfügung stehenden Induktivitätsstandrads von General Radio andere Standards gleicher Anschlussebene verglichen und kalibriert werden. Dazu Wird mit der hochauflösenden Präzisionsmessbrücke HP 4284A (Bild XII.1) der Wert des Kalibriergegenstandes mit dem des Normals verglichen. Dabei müssen die Messungen unmittelbar hintereinander erfolgen und der gleiche Messaufbau (Messparameter) verwendet werden (Kabel, Nullung, Anzeigeparameter). Die Messbrücke ist so einzustellen (Messpegel, Frequenz) und anzuschließen (s.a. X.1), dass die Werte aus dem Kalibrierschein des Bezugsnormals verwendet werden können. Der Referenzwert des Standards wird ebenfalls dem Kalibrierschein entnommen. Die Auswertung der Messwerte an der Messbrücke geschieht durch Mittelung über mehrere Messungen im Modus "INTEGR LONG" und ggf. der Aktivierung der "AVERAGE" Funktion. Die Anzeige sollte im Rahmen der gewünschten Messunsicherheit stabil sein, um eine gültige Aussage über den Messwert treffen zu können.

Bestimmt wird zunächst der Anzeigewert $(X_{ind,1})$ bei Anschluss des Bezugsnormals (Wert X_1 aus dem Kalibrierschein) und daraus die Abweichung der Anzeige vom Kalibrierwert $(\Delta X_{ind,1} = X_{ind,1} - X_1)$. Dabei wird angenommen, dass diese Abweichung im betreffenden (sehr kleinen) Messbereich immer konstant ist. Unmittelbar danach erfolgt die Messung am Kalibriergegenstand $(X_{ind,2})$. Durch Vergleich der beiden angezeigten Werte kann durch die Formel


$$X_1 - X_{ind,1} + X_{ind,2} = X_{ind,2} - \Delta X_{ind,1} = X_2$$

der tatsächliche Wert des Kalibriergegenstandes angegeben werden.

Als Messwert wird schließlich der Mittelwert aus mehreren Einzelmessungen erfasst. Schwankungen der Messwerte fließen als Typ A Unsicherheiten in der Messunsicherheitsbilanz ein.

XII.2.2.2 Messunsicherheitsbilanz

Skizze des Messaufbaus:

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.25	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XII Kalibrieren von Induktivitäten und Kapazitäten	8

Qualitätsmanagement-Handbuch

Vorgegebene bzw. abgelesene Größen:

 $X_{\rm s}$ Kalibrierwert des Standards. Die tatsächliche Abweichung des Standards vom

dokumentierten Kalibrierwert wird mit dem aus dem Kalibrierschein entnehmbaren Unsicherheitsintervall u (δX_{cal}) zu Null geschätzt. Der Kalibrierschein enthält darüber hinaus Angaben über den Erweiterungsfaktor und die Wahrscheinlichkeitsverteilung

(i.d.R. Normal k=2)

*X*₂ Wert des Kalibriergegenstandes

 $X_{ind,1}$ Abgelesener Wert an der Brücke bei Messung der Referenz Abgelesener Wert bei Messung des Kalibriergegenstandes

Gesuchte Größe:

 X_2 Wert des Kalibriergegenstandes

Es kann gezeigt werden, dass die Werte im Substitutionsverfahren denen der Direktmessung (vgl. Abs. XI.3.2) entsprechen, wenn von einem ideal reproduzierbaren Messobjekt ausgegangen wird. Die Zahlenwerte der Berechnungen für die einzelnen Messgrößen sind der Tabelle

 http://dmsserver/technik/Messunsicherheiten/QMH-Tabellen/Messunsicherheiten-Tabelle-XI.3-Kalibrieren-von-Induktivitaetsnormalen-und-Induktivitaetsmessgeraeten.xls

zu entnehmen, die Ergebnisse sind im Leistungsnachweis aufgeführt.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.25	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XII Kalibrieren von Induktivitäten und Kapazitäten	9

Qualitätsmanagement-Handbuch

© esz AG, 2018

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen Bedingungen 4.0 International zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie http://creativecommons.org/licenses/by-nc-sa/4.0/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.25	von: PF	von: s. DMS	Qualitätsmanagementhandbuch - XII Kalibrieren von	10
	am: s.DMS	am: s. DMS	Induktivitäten und Kapazitäten	