

XXIV Kalibrierung von pulsförmigen EMV -Messgrößen

Neben dem Einsatz und Messung von pulsförmigen Größen bei der Kalibrierung von Oszilloskopen bzw. Oszilloskopkalibratoren (Pulsgeneratoren), siehe Kapitel IX, erfordert die Kalibrierung der meisten EMV-Störgeneratoren die Beschreibung und Kalibrierung solcher oder ähnlicher Signale.

XXIV.1 Generatoren für schnelle transiente Störgrößen/ Burst

Zur Prüfung der Störfestigkeit elektrischer Geräte gegenüber Impulsen auf Kabeln und Leitungen (Prüfung der Störfestigkeit gegen schnelle transiente elektrische Störgrößen/ Burst) werden in der Industrie spezielle Störgeneratoren verwendet. Die regelmäßige Kalibrierung der eingesetzten Burstgeneratoren ist Aufgabe spezialisierter Kalibrierlabore wie der esz AG calibration & metrology. Um Burstgeneratoren normkonform nach den Anforderungen der **DIN EN 61000-4-4:2004** zu kalibrieren wurde ein präzises Verfahren entwickelt. Mit modernen Methoden der Signalverarbeitung wird mit einem eigens angefertigten Computerprogramm die Signalform des Burstimpulses rekonstruiert.

Messgrößen im "Burst" nach DIN EN 61000-4-4, Juli 2005 (Beschriftung siehe Tabelle)

	Messgröße		Eigenschaften	Toleranzen
	Burst Dauer	(a)	15 ms <i>bei 5 kHz</i>	± 20 %
(4)			0,75 ms <i>bei 100 kHz</i>	
(1)	Burst Periode	(b)	300 ms	± 20 %
	Burst Frequenz	<u>(C)</u>	5 kHz /100 kHz	± 20 %
	Spitzenwert	$U_{100\%}$	0,5 / 1 / 2 / 4 kV	<i>in 50</i> Ω ± 10 %
				<i>in 1 k</i> Ω ± 20 %
(2)	Anstiegszeit	tr	5 ns	± 30 %
	Impulsdauer	tw	50 ns	in 50 Ω ± 30 %
				<i>in 1 k</i> Ω – 15 ns /+100 ns

Tabelle XXIV.1.1

Alle in der Tabelle XXIV.1.1 angegebenen Messgrößen müssen nach DIN EN 61000-4-4:2004 überprüft werden, um einen Burstgenerator vollständig zu kalibrieren.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF	von: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von	1
	am: s.DMS	am: s. DMS	pulsförmigen EMV -Messgrößen	

XXIV.1.1 Kalibrierverfahren

XXIV.1.1.1 Der Kalibrieraufbau:

An den Hochspannungs-Ausgang des Generators wird ein für Burst Impulse entworfener Teiler der Firma EM-Test verwendet. Die Ausgangsimpedanz beider Teiler beträgt 50 Ω , der Anschluss erfolgt am 50 Ω Eingang eines Oszilloskops.

Auf das Messergebnis haben also neben dem offensichtlichen Einflusses des Generators im Wesentlichen der Teiler und das Oszilloskop einen Einfluss. Der exakte Frequenzgang von Teiler und Oszilloskop hat jeglich einen Einfluss auf die Messgrößen in Gruppe (2) aus obiger Tabelle. Bei den Messgrößen aus Gruppe (1) ist die Zeitbasis des Oszilloskops, sowie die Ableseunschärfe ausschlaggebend.

XXIV.1.1.2 Der Teiler

Der Teiler ist zugleich die in der Norm geforderte Prüflastimpedanz als auch ein Spannungsteiler, damit der Eingang des Oszilloskops nicht überlastet wird. Die Norm fordert eine Prüflastimpedanz von 50 Ω und 1 k Ω . Hierfür werden entweder der Teiler KW50 (50 Ω Eingang, Teilungsverhältnis 1:200) oder der Teiler KW1000 (1 k Ω Eingang, Teilungsverhältnis 1:500) verwendet. Um den 50 Ω Eingang des Oszilloskops auch bei hohen Spannungen nutzen zu können wird bei Messungen über 2 kV mit dem KW50 zusätzlich ein 6dB BNC-Dämpfungsglied mit Nennbandbreite 1 GHz verwendet.

Schaltbilder em-Test Kalibrationsset KW50 und KW1000

Beide Teiler stellen signaltheoretisch ein Zweitor dar, welches abhängig nach Frequenz- und Phasengang einen Einfluss auf die Kurvenform des Burstimpulses hat. Zur Charakterisierung wurden die Teiler an einem vektoriellen Netzwerkanalysator ausgemessen. Dabei ist vor allem das komplexe Übertragungsverhalten zwischen Ein- und Ausgang des Teilers von Interesse. Die Messung erfolgt unter Verwendung von hauseigenen hochpräzisen Kalibriersätzen an den Netzwerkanalysatoren Agilent E8361A und HP 8753C (siehe Kapitel XIII.3).

Die regelmäßige Kalibrierung der Teiler umfasst damit zum einen das Ausmessen des Übertragungsverhaltens am Netzwerkanalysator. Zum anderen wird an einer LCR Messbrücke der Eingangswiderstand überprüft (50 $\Omega \pm 2\%$ und 1 k $\Omega \pm 2\%$) und die Eingangskapazität für 1 k Ω (< 6 *pF*) bestimmt. Die Widerstandsmessung wird bei Gleichstrom durchgeführt und die Kapazitätsmessung bei einer niedrigen Frequenz (1 kHz).

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF	von: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von	2
	am: s.DMS	am: s. DMS	pulsförmigen EMV -Messgrößen	

typischer Burstgenerator (links unten) und verwendetes Testsystem bestehend aus High-Speed-Oszilloskop, den HV-Teilern EMTest KW50 / KW1000 und BNC-1 GHz-Dämpfungsglied.

XXIV.1.1.3 Oszilloskop

Als Oszilloskop wird ein LeCroy WaveRunner 104xi mit einer Nenn-Bandbreite von 1 GHz verwendet. Damit ist die in der Norm genannte Bandbreite von 400 MHz weit übertroffen. Eine höhere Bandbreite würde außerdem wenig Sinn machen, da die verwendeten Leitungstypen und Steckverbindungen, dass Signal bereits auf etwa 1 GHz beschränken. Daneben konnte aus den Versuchen gezeigt werden, dass die für die Signalform und Rekonstruktion entscheidenden Signalanteile bei Frequenzen um die 20 MHz liegen.

Mit dem Oszilloskop werden ca. 150 Burst Messungen aufgenommen, dabei wird ein Sweep von 4 eingestellt, das heißt jede 4. Messung ist der Mittelwert aus 4 Kurven. Das LabVIEW Programm liest also nur jede 4. Kurve ein.

Um die optimale System-Genauigkeit zu erreichen, werden folgende Einstellungen am LeCroy vorgenommen¹:

¹ Bei Verwendung der KW50 oder KW1000 Teiler wird automatisch die Spannungsanzeige abhängig von den vorliegenden Lastbedingungen im Vergleich zum Einstellwert ("unbelasteter Ausgang") verändert. Bei der Kalibrierung werden Kalibrier- und Messwerte auf den belasteten Wert bezogen. Zusätzlich werden die Einstellwerte angegeben. Siehe auch EN 61000-4-4:2016 Tabelle 2 Anmerkungen 1 und 2.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	3

esz AG calibration & metrology

Qualitätsmanagement-Handbuch

Einstellungen am Testsystem für Horizontal- / Vertikalerfassung, Zeitbasis und Trigger

Die Kalibrierung Kalibrierung des Oszilloskops erfordert die Bestimmung des Frequenzgangs mit mindestens 20 Punkten für die benötigten Bereiche und Spannungen, so dass bei der Verwendung im Burst-Kalibriersystem eine Korrektur der Frequenzantwort stattfinden kann. Die Korrektur wird automatisch durch das LabView Programm "burst.vi" durchgeführt. Ein grober Richtwert für die Verbesserung des Spitzenwertes durch Korrektion des Frequenzganges liegt in der Größenordnung von etwa 1%.

XXIV.1.1.4 Rekonstruktion des Signals

Durch die Kenntnis des Übertragungsverhaltens des Teilers kann aus dem gemessenen Signal das Signal am Eingang des Teilers ermittelt werden. Es gilt:

$$y(t) = g_{\text{Teiler}}(t) * g_{\text{Oszi}}(t) * x(t);$$
 "* = Faltung, g = Impuls - Antwort".

Durch den Zusammenhang des Zeitbereichs und dem Frequenzbereich ergibt sich:

$$Y(f) = G_{teiler}(f) \cdot G_{Oszi}(f) \cdot X(f); \quad \rightarrow \quad X(f) = \frac{Y(f)}{G_{teiler}(f) \cdot G_{Oszi}(f)}$$

Dabei ist $Y(f) = FFT\{y(t)\}$ und $G_{teiler}(f)$ das komplexe Frequenzspektrum, welches am Netzwerkanalysator ausgemessen wurde. $G_{Oszi}(f)$ ist der Frequenzgang durch Bestimmung an einem Oszilloskop-Kalibrator (siehe dazu Kapitel IX): Hierbei wird davon ausgegangen, dass die Phase über das Spektrum linear ist und daher nicht ausgemessen werden muss.

Durch eine inverse Fouriertransformation erhält man $x(t) = FFT^{-1} \{X(f)\}$. Dies ist das rekonstruierte Signal am Eingang des Teilers. Damit wird der (zwar relativ geringe) Einfluss des Teilers herausgerechnet. Alle Schritte der Berechnung werden vom Programm "Burst.vi" übernommen.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF	von: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von	4
	am: s.DMS	am: s. DMS	pulsförmigen EMV -Messgrößen	

XXIV.1.1.5 Das Programm "Burst.vi"

Zur Berechnung des rekonstruierten Burstimpulses wird das eigens für diesen Zweck mit LabView geschriebene Programm "Burst.vi" verwendet. Die Parameter "Spitzenwert", "Anstiegszeit" und "Impulsdauer" werden außerdem automatisch bestimmt. Dies geschieht mit einer höheren Genauigkeit als bei der bereits eingebauten Funktion des LeCroy Oszilloskops. Dies liegt daran, dass die Messfunktionen eigens nur für das Burstsignal entwickelt wurden.

Um kleinere Messabweichungen zu erreichen, ermöglicht das Programm mehrere Kurven auszuwerten und den Mittelwert zu berechnen. Es hat sich herausgestellt, dass es in der Regel ausreicht 32 Kurven zu berücksichtigen. Die restlichen Parameter (Tabelle XXIV.1.1 Messgruppe (1)) werden direkt am Oszilloskop mit Hilfe des Cursors vermessen.

XXIV.1.1.6 Reproduzierbarkeit von Burstimpulsen

Ein Burstpaket besteht aus mehreren einzelnen Burstimpulsen (bei 5 kHz und 15 ms Burst Dauer sind dies 75 Pulse). Standardmäßig hat sich als zweckmäßig erwiesen, dass stets der zweite Burstimpuls eines Paketes überprüft wird. Durch wiederholte Messungen wurde des weiteren festgestellt, dass die Reproduzierbarkeit der Messung eines Burstimpulses (z.B. des zweiten Burst) auch bei etwa 0,5 % bis 1 % (je nach Parameter) liegt. Da unbekannt ist, ob es sich um die Wiederholbarkeit des Verfahrens oder die des Generators handelt wird dieser Anteil als typische Messunsicherheit für die Reproduktion der Ergebnisse berücksichtigt.

Es wurde in diesem Zusammenhang festgestellt, dass neben dem Problem der Wiederholbarkeit, zugleich eine kontinuierliche Veränderung des Spitzenwertes innerhalb eines Burstpakets auftritt (siehe folgendes Diagramm). Der Spitzenwert sinkt dabei um etwa 1,5%. Dennoch wird von der Normkonformität des Generators ausgegangen, sofern der untersuchte Impuls innerhalb der Anforderungen liegt.

Abbildung: Abfall des Spitzenwertes in einem Burstpaket.

Ause	gabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS	5.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	5

XXIV.1.2 Messunsicherheitsbilanz

Da insgesamt 6 verschiedene Parameter mit 4 Methoden ermittelt werden, sind im Folgenden auch die insgesamt 4 zugehörigen Messunsicherheitsbilanz aufgeführt. Die Parameter Burst Dauer und Burst Periode sind auf die gleiche Weise zu ermitteln und konnten daher zusammengefasst werden. Die Reihenfolge der Budgets richtet sich nach oben aufgeführter Tabelle XXIV.1.1.

XXIV.1.2.1 Burst-Dauer und Burst-Periode

Vorgegebene bzw. ermittelte Größen:

t_{measure} Mit dem Cursor ausgemessene Zeit. (Burst Periode oder Burst Dauer)

Gesuchte Größe:

t_{UUT} Burst Dauer/ Burst Periode des Generators.

Einflussgrößen:

 $\delta t_{measure}$

Die Ablese- und Wiederholgenauigkeit am Oszilloskop. Im schlechtesten Falle konnte diese kleiner als 0,4 % bestimmt werden.

 δt_{Oszi}
 Abweichung der Zeitbasis des Oszilloskops. Diese ist im Handbuch mit 10 ppm angegeben und konnte bei den Kalibrierungen sogar noch besser bestätigt werden. Aufgrund des sehr kleinen Wertes (3 Potenzen kleiner als die Ablesegenauigkeit), kann die Abweichung in der Messunsicherheitsbilanz vernachlässigt werden.

Modellgleichung:

Mit den oben aufgeführten Größen ergibt sich:

$$t_{UUT} = t_{measure} + \delta t_{measure} + \delta t_{Oszi}$$

Für die dem Ergebnis beizuordnende relative Standardmessunsicherheit ergibt sich daraus:

$$w^2(t_{UUT}) = w_{measure}^2 + w_{Oszi}^2$$

Größe	Schätzwert	rel. Standard- messunsicherheit	Verteilung	Sensitivitäts- koeffizent	Unsicherheits- beitrag
Xi	X i	$W(X_i)$		Ci	$W_i(y)$
t _{measure}	Т				
$\delta t_{measure}$	0	0,4%/√3	Rechteck	1	0,231 %
δt_{Oszi}	0	0,001%/ √3	Rechteck	1	0,001 %
t _{UUT}		Т		$w(y) = \sqrt{\sum_{i=1}^{N} c_i^2 w_i^2(y)}$	0,231 %
	rel. erweit	erte Messunsicherheit	(k=2)	$W(y) = k \cdot w(y)$	0,46 %

Tabellarische Darstellung der Messunsicherheitsbilanz:

Die relative erweiterte Messunsicherheit beträgt also maximal 0,5%.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF	von: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von	6
	am: s.DMS	am: s. DMS	pulsförmigen EMV -Messgrößen	

XXIV.1.2.2 Burst-Frequenz

Vorgegebene bzw. ermittelte Größen:

f_{measure} Mit der integrierten Messfunktion "Frequenz" am Oszilloskop LeCroy WaveRunner 104xi ausgemessene Frequenz.

Gesuchte Größe:

f_{UUT} Burst Frequenz des Generators.

Einflussgrößen:

- δf_{measure} Die Abweichung entstehend durch Verwendung und Wiederholbarkeit der Messfunktion. Aus mehreren Messungen wurde aus der Streuung die Standardabweichung berechnet, je nach exakter Einstellung am Oszilloskop ergab sich diese kleiner als 7·10⁻⁴. Nimmt man an, dass jeder Impuls eine Anstiegszeit von 5 ns breit ist und nicht genauer lokalisiert werden kann, kann eine maximale Abweichung von 0,1% berechnet werden. Es wird daher der größere Wert als mögliche Abweichung verwendet.
- δf_{Oszi} Die Zeitbasis des Oszilloskops ist im Handbuch mit 10 ppm angegeben und konnte sogar weitaus besser verifiziert werden. Daraus ergibt sich auch für die Frequenz eine maximales Abweichungsintervall von ±0,001 %. Diese Abweichung kann jedoch fast vernachlässigt werden, da sie sehr klein ist.

Modellgleichung:

Mit den oben aufgeführten Größen ergibt sich:

$$f_{UUT} = f_{measure} + \delta f_{measure} + \delta f_{Oszi}$$

Für die dem Ergebnis beizuordnende relative Standardmessunsicherheit ergibt sich daraus:

$$w^2(f_{UUT}) = w_{measure}^2 + w_{Oszi}^2$$

Größe V	Schätzwert	rel. Standard- messunsicherheit	Verteilung	Sensitivitäts- koeffizent	Unsicherheits- beitrag
Λį	Xi	W(X _i)		C _i	<i>w_i(y)</i>
f _{measure}	F				
$\delta f_{measure}$	0	0,1%/√3	Rechteck	1	0,058 %
δf_{Oszi}	0	0,001%/ √3	Rechteck	1	0,001 %
f _{UUT}	F			$w(y) = \sqrt{\sum_{i=1}^{N} c_i^2 w_i^2(y)}$	0,058 %
	rel. erweit	erte Messunsicherheit	(k=2)	$W(y) = k \cdot w(y)$	0,115 %

Tabellarische Darstellung der Messunsicherheitsbilanz:

Die relative erweiterte Messunsicherheit beträgt also maximal 0,1%.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF	von: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von	7
	am: s.DMS	am: s. DMS	pulsförmigen EMV -Messgrößen	

XXIV.1.2.3 Spitzenwert

Vorgegebene bzw. ermittelte Größen:

U_{measure} Die vom Programm "Burst.vi" ermittelte Spitzenwert in Volt. Mittelwert aus mindestens 32 Messkurven. Jede einzelne Kurve ist wieder mit einem Mittelwert von 4 aufgenommen.

Gesuchte Größe:

*U*_{UUT} Spitzenwert des Generators.

Einflussgrößen:

 δU_{Oszi}

Die Messunsicherheit bedingt durch die Verwendung des Oszilloskops "LeCroy WaveRunner 104xi". Um eine Aussage über die Abweichung zu treffen, wurden die Messwerte mehrerer Oszilloskope miteinander verglichen. Darunter auch einem "Agilent infinium 54854A DSO" mit einer Nennbandbreite von 4 GHz. Die Ergebnisse der Vergleichsmessungen lassen auf eine Abweichung von unter 2,5 % schließen. Neben den Vergleichsmessungen wurde durch theoretische Überlegungen die Plausibilität der ermittelten maximalen Abweichung durch das Oszilloskop ermittelt. Einige Überlegungen sollen hier kurz dargestellt werden:

- Messunsicherheit durch Vermessung des Frequenzgangs. Die Vermessung liegt bei ungefähr 1,5% pro Messwert im Frequenzbereich. Da nicht von einer durchgängigen Abweichung von 1,5% über das ganze Spektrum auszugehen ist (dies würde genau ein Abweichung des Spitzenwertes von 1,5% ergeben), liegt die hierdurch hervorgerufene Abweichung des Spitzenwertes sicherlich unter 1,5%.
- Messrauschen und Amplitudenquantisierung des Oszilloskops. Wird durch die Mittelung von 4 Kurven, sowie der Mittelung über 32 Messungen verringert, kann jedoch nicht ganz vermieden werden. Dieses Problem ist zugleich eng mit der Reproduzierbarkeit der Burstgeneratoren verknüpft, welche um Größenordnungen schlechter ist als die Reproduzierbarkeit die aus dem NF Bereich bekannt ist. Siehe dazu auch die Bemerkung "Reproduzierbarkeit von Burstkalibratoren" weiter Oben.
- Reflexionen durch Fehlanpassung des 50 Ω Ausgang des Teilers und des Eingangs des Oszilloskops. Reflexionen können die Kurvenform verändern und haben damit Einfluss auf den Spitzenwert. Es konnten jedoch nur geringe

Fehlanpassungen ($|\Gamma| \le 0.12$ im Signaltheoretisch relevanten Bereich bis

400 MHz) des Teilers und des Oszilloskops ermittelt werden, so dass der Einfluss der Reflexion unter den hier aufgeführten Punkten nicht dominieren dürfte.

- δU_{Verfahren}
 Unsicherheit des Verfahrens. Dies beinhaltet die Verwendung des Spannungsteilers sowie die Rekonstruktion des Signals. Durch die FFT und inverse FFT selber wird so gut wie kein Fehler gemacht, da mit ausreichender Fließkommagenauigkeit gerechnet wird. Die Bandbreite mit welcher im Frequenzbereich gerechnet ist, ist höher als die durch den Messaufbau messbaren Frequenzen (maximal ca. 1 GHz). Jeglich das Ausmessen des Teilerspektrum ist mit einer Unsicherheit belastet, welche natürlich auch einen Einfluss auf den Spitzenwert hat. Durch Verwendung des hochwertigen Messsystems (Details siehe oben) ist die erweiterte Messunsicherheit der Dämpfungsmessung recht gering und wird mit 1,5 % abgeschätzt. Diese ist durch die Verifikation von kalibrierten Dämpfungsgliedern weit besser belegbar als der Einfluss von Adaption, Kabellänge und Wiederholbarkeit der Messung.
- δU
WiederholBei Messung von 128 Messwerten ergibt sich eine Streuung der Messwerte durch
den Generator sowie durch Messrauschen. Die ermittelte Standardabweichung
beträgt dabei 0,75% und ist somit eine obere Grenze für die Wiederholgenauigkeit.
Untersuchungen haben ergeben, dass der Burstgenerator einen großen Einfluss auf

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	8

die Wiederholgenauigkeit hat. In der Praxis kann daher eine Anpassung der Wiederholgenauigkeit nötig sein.

- δU_{6dB} Bei Spannungen über 2 kV in 50 Ω -Last wird ein 6 dB Dämpfungsglied verwendet. Vergleichsmessungen bei 2 kV mit und ohne 6 dB Dämpfungsglied haben ergeben dass eine Abweichung von unter 1 % zu erwarten ist.
- $\delta U_{Mismatch}$ Die Fehlanpassung zwischen Generatorausgang und dem Eingang des 50 Ω -Teilers Abweichungen verursachen, die abhängig von dem Betrag des Ausgangsreflexionsfaktors | Γ_{Out} | und dem Eingangsreflexionsfaktors des Teilers | Γ_{KW50} | zu einem u-verteilten Unsicherheitsintervall der Grenzen

$$a_{mismatch} = 100 \cdot |\Gamma_{Out}| \cdot |\Gamma_{KW50}| \%$$

führen. Der Eingangsreflexionsfaktor des Teilers kann inklusive HV-auf-BNC-Adapter gemessen werden. Er beträgt typisch $|\Gamma_{KW50}| \le 0,1$ bis zur signaltheoretisch relevanten Frequenz von 20 MHz. Der Ausgangsreflexionsfaktor des DUT ist unbekannt und kann nur geschätzt werden. Unter der Annahme, dass die Konstruktion ähnlichen Bedingungen unterliegt, wie die des Teilers bzw. der Adapter, wird vermutet, dass eine Abschätzung des Ausgangsreflexionsfaktors mit $|\Gamma_{Out}| \le 0,2$ realistisch ist. Somit ergibt sich die Halbbreite des Unsicherheitsintervalls zu $a_{mismatch} = 2 \%$.

Modellgleichung:

Mit den oben aufgeführten Größen ergibt sich:

$$U_{UUT} = U_{measure} + \delta U_{Oszi} + \delta U_{Verfahren} + \delta U_{Wiederhol} + \delta U_{6dB} + \delta U_{mismatch};$$

Für die dem Ergebnis beizuordnende Standardmessunsicherheit ergibt sich daraus (Sensitivitätskoeffizienten $c_i = 1$):

$$u^{2}(U_{UUT}) = u_{Oszi}^{2} + u_{Verfahren}^{2} + u_{Wiederhol}^{2} + u_{6dB}^{2}$$

Größe	Schätzwert	Standard- messunsicherheit	Verteilung	Sensitivitäts- koeffizent	Unsicherheits- beitrag
X _i	X i	u(x _i)		Ci	<i>u_i(у)</i>
U _{measure}	X				
δU_{Oszi}	0	$a_{Oszi}/\sqrt{3}$	Rechteck	1	U _{Oszi}
$\delta U_{Verfahren}$	0	$a_{Verfahren}/2$	Normal	1	$u_{\scriptscriptstyle Verfahren}$
$\delta U_{Wiederhol}$	0	$a_{\scriptscriptstyle Wiederhol}$	Normal	1	U _{Wiederhol}
δU_{6dB}	0	$a_{6dB}/\sqrt{2}$	u-verteilt	1	u_{6dB}
$\delta U_{mismatch}$	0	$a_{mismatch}$ / $\sqrt{2}$	u-verteilt	1	$\mathcal{U}_{mismatch}$
U _{UUT}		X		$u(y) = \sqrt{\sum_{i=1}^{N} c_i^2 u_i^2(y)}$	u(y)
	erweiter	te Messunsicherheit (I	k=2)	$U(y) = k \cdot u(y)$	U(y)

Tabellarische Darstellung der Messunsicherheitsbilanz:

Bei der Betrachtung der relativen Anteile der Messunsicherheit gilt ebenso: $w^2(U_{UUT}) = w_{Oszi}^2 + w_{Verfahren}^2 + w_{Wiederhol}^2 + w_{6dB}^2 + w_{mismatch}^2$

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF	von: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von	9
	am: s.DMS	am: s. DMS	pulsförmigen EMV -Messgrößen	

also					
Größe	Schätzwert	Standard- messunsicherheit	Verteilung	Sensitivitäts- koeffizent	Unsicherheits- beitrag
X _i	X i	W(X _i)		Ci	W _i (y)
U _{measure}	<i>x</i>				
δU _{Oszi}	0	$2,5\%/\sqrt{3}$	Rechteck	1	1,44 %
$\delta U_{Verfahren}$	0	1,5%/2	Normal	1	0,75 %
$\delta U_{Wiederhol}$	0	0,75%	Normal	1	0,75 %
δU_{6dB}	0	$1\%/\sqrt{2}$	u-verteilt	1	0,71 %
$\delta U_{mismatch}$	0	$2\%/\sqrt{2}$	u-verteilt	1	1,4 %
U _{UUT}		x		$w(y) = \sqrt{\sum_{i=1}^{N} c_i^2 w_i^2(y)}$	2,4 %
	erweiter	te Messunsicherheit (I	к=2)	$W(y) = k \cdot w(y)$	4,8 %

XXIV.1.2.3 Anstiegszeit / Impulsdauer

Vorgegebene bzw. ermittelte Größen:

tr_{measure} Die vom Programm "Burst.vi" ermittelte Anstiegszeit / Impulsdauer. Mittelwert aus mindestens 32 Messkurven. Jede einzelne Kurve ist mit einem Mittelwert von 4 aufgenommen.

Gesuchte Größe:

tr_{UUT} Die Anstiegszeit/ Impulsdauer des Generators.

Einflussgrößen:

- *Str_{Reflevel}* Die exakte Vermessungen der 10% und 90% Referenzlevels sind Vorraussetzungen zur Bestimmung der Anstiegszeit; der 50% Referenzlevel für die Impulsdauer. Dazu ist die Vermessung von den 0% und 100%-Werten nötig. Hierbei sind die absoluten Messabweichungen nicht zu berücksichtigen, stattdessen sind relative Abweichungen in der Linearität und durch Offset ausschlaggebend, welche dem Kalibrierschein des Oszilloskops entnommen werden. Analog zu Kapitel IX.3.2 wird angenommen, dass die Referenzlevels der Flanke auf die Zeitachse mit mindestens ±2,5% zugeordnet werden können.
- *δtr_{Verfahren}* Unsicherheit durch Rekonstruktion des Signals. Das absolute Teilungsverhältnis ist dabei nicht ausschlaggebend, wichtiger ist hingegen der Frequenzgang. Eine analytische Betrachtung ist hierbei kaum möglich. Mehrfach Messungen des Teilerspektrums, sowie des Oszilloskops geben einen Anhaltspunkt. Darüber hinaus haben Simulationen gezeigt, dass dieser Einfluss kleiner als 2% sein wird. Dies konnte durch Vergleichsmessungen mit dem Agilent infinium 54854A DSO, Nennbandbreite 4 GHz, auch bestätigt werden.
- *δt*_{Wiederhol} Bei Mittelung von 128 Messwerten ergibt sich eine Streuung der Messwerte durch den Generator sowie durch Messrauschen. Die ermittelte Standardabweichung beträgt dabei 1,8% und ist somit eine obere Grenze für die Wiederholgenauigkeit, da das Ergebnis stets den Mittelwert darstellt. Implizit ist in der Wiederholgenauigkeit auch die Ablesgenauigkeit enthalten und daher wird diese nicht extra aufgeführt. Da aber ein Teil Wiederholgenauigkeit wohl bereits in der Unsicherheit von δtr_{Reflevel} enthalten ist, wird ein typischer Wert von 1% angenommen.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	10

Bei Spannungen über 2 kV wird ein 6 dB Dämpfungsglied verwendet. Vergleichsmessungen bei 2 kV mit und ohne 6 dB Dämpfungsglied haben ergeben, dass eine Abweichung von weniger als 1 % auf das Ergebnis zu erwarten ist. Dies überrascht nicht, da eine insgesamte Stauchung und Streckung des Signals, die Anstiegszeit nicht ändert (flacher Frequenzgang des Dämpfungsgliedes vorausgesetzt).

Modellgleichung:

 δt_{6dB}

Mit den oben aufgeführten Größen ergibt sich:

$$tr_{UUT} = tr_{measure} + \delta tr_{Re\ flevel} + \delta tr_{Verfahren} + \delta tr_{Wiederhol} + \delta tr_{6dB};$$

Für die dem Ergebnis beizuordnende Standardmessunsicherheit ergibt sich daraus (Sensitivitätskoeffizienten $c_i = 1$):

 $u^{2}(\Delta U) = u_{Verfahren}^{2} + u_{Re\,flevel}^{2} + u_{Wiederhol}^{2} + u_{6dB}^{2}$

Größe <i>X_i</i>	Schätzwert	Standard- messunsicherheit <i>u(x_i)</i>	Verteilung	Sensitivitäts- koeffizent <i>c_i</i>	Unsicherheits- beitrag u _i (y)
tr _{measure}	x				
$\delta tr_{Reflevel}$	0	$a_{\text{Re flevel}} / \sqrt{3}$	Rechteck	1	$u_{\it Verfahren}$
$\delta tr_{Verfahren}$	0	$a_{Verfahren}/\sqrt{3}$	Rechteck	1	$u_{Verfahren}$
$\delta tr_{Wiederhol}$	0	$a_{_{Wiederhol}}/\sqrt{3}$	Normal	1	$u_{\scriptscriptstyle Wiederhol}$
δtr_{6dB}	0	$a_{6dB}/\sqrt{2}$	u-verteilt	1	u_{6dB}
tr _{UUT}		X		$u(y) = \sqrt{\sum_{i=1}^{N} c_i^2 u_i^2(y)}$	u(y)
	erweiter	e Messunsicherheit (P	k=2)	$U(y) = k \cdot u(y)$	U(y)

Tabellarische Darstellung der Messunsicherheitsbilanz:

Bej der Betrachtung der relativen Anteile der Messunsicherheit gilt ebenso:

 $w^{2}(tr_{UUT}) = w_{\text{Re flevel}}^{2} + w_{Verfahren}^{2} + w_{Wiederhol}^{2} + w_{6dB}^{2}$

also					
Größe	Schätzwert	Standard- messunsicherheit	Verteilung	Sensitivitäts- koeffizent	Unsicherheits- beitrag
X _i	X i	w(x i)		Ci	<i>w_i(y)</i>
tr _{measure}	x				
$\delta tr_{Reflevel}$	0	$2,5\%/\sqrt{3}$	Normal	1	1,44 %
$\delta tr_{Verfahren}$	0	$2,0\%/\sqrt{3}$	Normal	1	1,15 %
$\delta tr_{Wiederhol}$	0	$1,0\%/\sqrt{3}$	Normal	1	0,58 %
δtr_{6dB}	0	$1,0\%/\sqrt{2}$	u-verteilt	1	0,71 %
tr _{UUT}		X		$w(y) = \sqrt{\sum_{i=1}^{N} c_i^2 u_i^2(y)}$	2,06 %
	erweiter	te Messunsicherheit (ł	<u>(=2)</u>	$W(y) = k \cdot u(y)$	4,1 %

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	11

esz AG calibration & metrology Qualitätsmanagement-Handbuch

XXIV.1.3 Ergebnisse

Messgröße, Kalibriergegenstand	Messbereich, Messspanne <i>Range</i>		eich, Inne	Messbedingungen, Verfahren	kleinste angebbare Messunsicherheit Bemerkunge	
Measured Quantity or Instrument			е	Conditions / Best Measurement Procedure Capability		Remarks
Burst-Generatoren Ausgangspannung Spitzenwert U	100 V	bis	4 kV	unter 50 Ω oder 1 k Ω Last	$48 \cdot 10^{-3} \cdot U$	Kalibrierung von
Anstiegszeit und Impulsdauer <i>T</i> _r	3 ns	bis	1 µs		$41 \cdot 10^{-3} \cdot T_r$	Burstgeneratoren gemäß
Burstdauer und Burstperiode T	10 µs	bis	1 s		$5 \cdot 10^3 \cdot T$	EN 61000-4-4:2010
Impulsfrequenz f	100 Hz	bis	500 kHz		$1 \cdot 10^{-3} \cdot f$	

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	12

XXIV.2 Kalibrierung von ESD Generatoren

Siehe EN 61000-4-2:2009-B.4 und esz AA0244

Die Realisierung kann über ein LabView-Tool erfolgen, das automatisch die nötigen Einstellungen am Oszilloskop vornimmt und die relevanten Parameter erfasst. Dazu steht z.B. ein Gerät der Agilent infinium Serie (54854A) mit 4 GHz Bandbreite und ein 4 GHz Target (RSE ST201) zur Verfügung. Die Niederfrequenzimpedanz des Verbunds aus Target, Abschwächer und Kabel kann gemäß EN 61000-4-2:2009-B.3 im elektrischen Labor bestimmt werden, das Hochfrequenzverhalten ist durch die Kalibrierung der PTB bis 4 GHz bekannt.

XXIV.2.1 Kurzanleitung (LabView mit dem pellegrini.vi)

Siehe auch K:\Dokumentation Hersteller\Agilent\54800 Serie Infinium\ESD-Generatoren Test

XXIV.2.2 Messaufbau

In der Schirmkammer wird das Oszilloskop, z.B. Agilent 54854A (KL16062, ID000229) verwendet

(1) Grundgerät des ESD - Generators

- (2) Prüfpistole mit Entladnetzwerk und Auslöser
- (3) Pellegrini Target mit integriertem 20 dB Dämpfungsglied
- (4) Zusätzliches 6 dB Dämpfungsglied
- (5) Oszilloskop mit mindestens 2 GHz Bandbreite

(6) Schirmung

(Benutzername: KL16062 Passwort: esz). Die BNC-Leitung vom Target wird ggf. über ein zusätzliches BNC 6 dB Dämpfungsglied mit Channel 1 verbunden. Das Scope wird über ein LAN-Kabel an das esz-Netzwerk angeschlossen. Wenn die Scope-Funktion über das VI gestartet wurde müssen keine weiteren Einstellungen mehr gemacht werden. Ansonsten müssen Triggerpegel, vertikale Verstärkung. Zeitbasis und Skalierungsfaktor (der Probefactor in A/V ist die Niederfrequenzimpedanz) so eingestellt werden, dass die Ablesung bereits in Ampere möglich ist. Die Anstiegszeitbewertung muss von "Auto" auf "Maximum" umgestellt

werden, damit mögliche Ripple auf der steigenden Flanke des Pulses die richtigen Werte für die 10% und 90% Schwellen nicht beeinflussen. Die Zeitbasis wird so gewählt, dass der Puls mindestens zwischen Minimum, Maximum, 30 ns und 60 ns vollständig darstellbar ist. Bezugswert für die Zeit (30 ns und 60 ns ist der Moment, in dem der Strom das erste Mal 10 % des ersten Höchstwert des Entladestroms erreicht.

Außerhalb der Schirmkammer werden der ESD-Generator und der Steuerrechner für das Scope oder VI aufgebaut. Wichtig ist die richtige Erdung wie in EN 61000-4-2 angegeben.

Die Einstellung des Generators während der Kalibrierung (Prüfspannung, Polarität) wird manuell durchgeführt.

XXIV.2.3 Ausführen des Programms

Das Benötigte Programm "pellegrini.vi" ist auf dem Desktop des Steuerrechners (z.B. des Laptops KalLap01) zu finden (der Start des Programms kann bei mäßiger Rechnerleistung etwas dauern). Bevor das Programm mit einem Klick auf das weiße Pfeilsymbol links in der Menüleiste gestartet werden kann muss das Scope angewählt werden. Dazu wird im Dropdown-Menü das Gerät KL16062 ausgewählt.

Wird das Programm nicht verwendet wird das Scope auf Einzelerfassung geschaltet und z.B. mit der "Start-Stop-Ampel" für den nächsten Puls "scharf" geschaltet. Der Clear-Button löscht die aktuelle Erfassung.

I	Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
	DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	13

XXIV.2.4 Messungen durchführen

Schritt 1:Auswahl der Polarität und der Prüfschärfe im rechten Menü des Programms.
Klick auf "read/write" zum Senden der Einstellungen.
Das Scope ist bereit und die Entgladung am Target kann ausgeführt werden.Schritt 2:erneuter Klick auf "read write": Kurve wird aus dem Scope ins Programm geladen
Klick auf "Messungen": Die Parameter werden gemessen

Die Schritte 1 bis 3 werden für alle Parameter wiederholt. Die Messergebnisse können im Menü "Auswertung" überprüft werden. Am Ende kann über einen Klick auf "Ergebnisse zusammenfassen" ein Tabelle der Messergebnisse erstellt werden.

Schritt 4: Beenden des Programms mit Klick auf das "X".

Ohne das VI erfolgt die Ablesung über die Messfunktionen "Risetime", "Amplitude" und den Cursor/Marker (z.B. "track Markers with Waveform"). Der Bezugspunkt für die Zeit (ΔT , z.B. Marker A) ist am Beginn der steigenden Flanke zu setzen, wo der Wert des Stromes das erste Mal 10 % des Höchstwertes des Entladstroms erreicht.

XXIV.2.5 Messunsicherheit

XXIV.2.5.1 Anstiegszeit

Die Modelle für die Anstiegszeitmessung sind QMH IX.3.2 und IX 3.3 zu entnehmen. Dabei wird angenommen, dass die Kette aus Target, Abschwächer und Kabel aufgrund der hohen Bandbreite keinen wesentlichen Einfluss auf das Gesamtergebnis darstellt. Wird die Systemanstiegszeit des Oszillokops von ca. 100 ps nicht korrigiert ergibt sich etwa

 $U(t_r) = 3 \% \cdot t_r + 40 \ ps$ im Bereich von Messwerten größer 300 ps für Oszilloskop Agilent 54854A $U(t_r) = 3 \% \cdot t_r + 75 \ ps$ im Bereich von Messwerten größer 300 ps für Oszilloskop Agilent 54852A

(siehe XL-Tabelle "Messunsicherheiten Tabelle IX Anstiegszeit.xls")

XXIV.2.5.2 Spitzenstromstärke

Die Zusammenstellung der Messunsicherheitsbilanz ist EN 61000-4-2:2009-E.7 zu entnehmen. Die Modellgleichung kann als ein Produktmodell dargestellt werden

$$I_{measured} = \frac{A_{Att} \cdot U_{Scope}}{R_{Targ\,et}}$$
$$I_{P} = I_{measured} \cdot K_{vertical} \cdot K_{Targ\,et} \cdot K_{mismatch} \cdot K_{LF} \cdot K_{quantization} \cdot K_{Re\,p} \cdot K_{Attenuator}$$

Dabei sind

I_P gesuchte Spitzenstromstärke

*U*_{Scope} gemessene Spannung am Oszilloskop

*A*_{Att} Faktor eines zusätzlich nötigen Dämpfungsglieds. Der Wert ergibt sich durch die nominelle oder gemessene Dämpfung *L*_{dB} im kleinen Frequenzbereich, z.B. bei 50 MHz oder auch bei Gleichspannung. Die Ebenheit des Frequenzverlaufs muss dem des Oszilloskops bis min. 2 GHz entsprechen. Der Faktor errechnet sich damit zu

$$A_{Att} = 10^{\frac{L_{dB}}{20\,dB}} = 10^{\frac{6\,dB}{20\,dB}} = 1,995$$

*U*_{Scope} Gemessene Spannung am Oszilloskop

Au	sgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DN	IS.23	von: PF	von: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von	14
		am: s.DMS	am: s. DMS	pulsförmigen EMV -Messgrößen	

- *R_{Target}* Transferimpedanz der Target/Kabel/Abschwächer-Kombination
- *I_{measured}* gemessene Stromstärke unter Berücksichtigung des Teilungsfaktors von Abschwächer, Target, Kabel und ggf. zusätzlichem 6 dB Dämpfungsglied
- $K_{vertical}$ Einfluss des vertikalen Messbereichs des Oszilloskops. Dieser Wert ist aus der Spezifikation des Oszilloskops bekannt und wird durch die Kalibrierung nachgewiesen. Er schließt die vertikale Abweichung und Linearität im Niederfrequenzbereich ein. Die Ebenheit des Frequenzganges des Oszilloskop wurde ebenfalls bei der Kalibrierung nachgewiesen und liegt im Bereich eines Filters höherer Ordnung mit einer -3 dB-Grenzfrequenz größer 4 GHz. Durch die Angaben im Kalibrierschein ist bekannt, dass die durch die Vertikalverstärkung des Oszilloskops entstehende Abweichung im relevanten Spektralbereich zwischen 500 MHz bis ca. 1 GHz in einem Intervall von maximal ± 3 % liegt.
- *K*_{Target} Einfluss des Targets, Abschwächer und Kabel. Das Target wurde im HF-Bereich mit einer erweiterten Unsicherheit von 0,15 dB (etwa 2 %) kalibriert, der Frequenzverlauf ist flacher als 0,4 dB bis 1 GHz bzw. 0,7 dB bis 4 GHz nachgewiesen worden
- $K_{mismatch}$ Der maximale Einfluss durch die Fehlanpassung zwischen Target und Oszilloskop kann durch die Reflexionsfaktoren beschrieben werden. Bis 2 GHz sind die Werte von Target $|\Gamma_C| \le 0,1$ und Scope $|\Gamma_O| \le 0,05$ bekannt. Das dadurch entstehende Werteintervall beträgt $|\Gamma_C| \cdot |\Gamma_O| \cdot 100\% = 0,5\%$
- *K*_{quantization} Der Einfluss der vertikalen Quantisierung von 8 Bit des Oszilloskops ist abhängig von der verwendeten Verstärkung (Aussteuerung). Für die Darstellung der 7,5 A-Kurvenform bei 8 Skalenteilen (engl. Divisions, Div) Bildschirmdynamik kann die vertikale Verstärkung auf minimal 0,2 V/Div gestellt werden. Die Halbbreite des maximalen Quantisierungsintervalls *a*_{quantization} ergibt sich bei dieser Einstellung zu

$$a_{\text{quantization}} = \frac{1}{2} \cdot \frac{\frac{8 \text{ Div}}{2^{8 \text{Bit}}}}{\frac{I_{\text{measured}} \cdot R_{\text{Target}}}{0.2 \frac{\text{V}}{\text{Div}}}} \cdot 100 \%$$

- *K*_{*LF*} Die Niederfrequenzimpedanz kann durch das elektrische Labor bei 1 A mit einer erweiterten relativen Unsicherheit kleiner 0,05 % dargestellt werden
- K_{Rep} Die Wiederholbarkeit ist vom Messobjekt abhängig. Die mittlere Wiederholbarkeit liegt jedoch bei 0,5 % + 100 mA

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	15

Wiederholbarkeit eines typ. Messobjektes (ESD Generator emc partner, ESD 3000: Streuung der Messwerte des METAS Ringvergleichs 03/2016, k=1)

*K*_{Attenuator} Der Einfluss eines evtl. benötigten zusätzlichen 6 dB-Abschwächers am Eingang des Oszilloskops kann durch Messung eines kleineren Pegels einmal mit und einmal ohne Abschwächer bestimmt werden. Er liegt in jedem Fall unterhalb von 1,5 %

Größe	Schätzwert	Halbbreit	Verteilung	Unsicherheit	Sensitivit	Unsicherheitsbeitr
X _i	X i	е		u(x _i)	at C _i	ag
		а				<i>w_i(y)</i> ²
I _{measured}	$\frac{A_{Att} \cdot U_{Scope}}{R_{T \arg et}}$					
K _{vertical}	1	3 %	Rechteck	$\frac{3\%}{\sqrt{3}}$	1	1,73 %
<i>K</i> _{Target}	1	2 %	Normal, k=2	$\frac{2\%}{2}$	1	1,00 %
K _{mismatch}	1	0,5 %	u-verteilt	$\frac{0,5~\%}{\sqrt{2}}$	1	0,35 %
K_{LF}	1	0,005 %	Normal, k=2	$\frac{0,05~\%}{2}$	1	0,025 %
$K_{quantization}$	1	3 %	Rechteck	$\frac{0,21\%}{\sqrt{3}}$	1	0,12 %
K _{Rep}	1	1,5 %	Normal	1,84 %	1	1,84 %
<i>K</i> _{Attenuator}	1	1,5 %	Rechteck	$\frac{1,5\%}{\sqrt{3}}$	1	n.a.

Tabellarische Darstellung der Messunsicherheitsbilanz am Beispiel der Messung der 7,5 A Kurvenform

 $\overline{}^2$ relative Beiträge werden mit *w* referenziert; absolute Beiträge mit *u*

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	16

esz AG calibration & metrology

Qualitätsmanagement-Handbuch

Größe	Schätzwert	Halbbreit	Verteilung	Unsicherheit	Sensitivit	Unsicherheitsbeitr
Xi	Xi	e		u(x _i)	ät / <i>c_i/</i>	ag
		а				<i>w_i(y)</i> [∠]
I_P	Star	ndardunsiche	erheit	$w(I_P) = \sqrt{\sum_{i=1}^N c_i^2} v$	$v_i^2(I_p)$	2,75 %
	rel. erweiter	te Messunsio	cherheit (k=2)	$W(y) = k \cdot w$	(y)	5,5 %

XXIV.2.5.3 Entladestromstärke zum Zeitpunkt t_x , z.B. der I_{30} und I_{60} Stromstärke

zusätzlich zu den Einflussfaktoren bei Betrachtung der Spitzenstromstärke sind zu berücksichtigen:

- K_{tx} Einfluss des horizontalen Messbereichs und der Abtastung des Oszilloskops. Durch die Abstastrate und Sample-Unsicherheit ergibt sich ein zusätzliches Intervall von 1/20 GS/s = 50 ps bei der Ablesung des *Ix* Zeitpunktes und beträgt im schlechtesten Fall (50 ps / 30 ns) etwa 0,17 %³
- *K*_{10%} Erfolgt die Zuordnung des 10 %-Wertes "unscharf" etwa um die Unsicherheit der Anstiegszeitmessung von ca. ±100 ps (mit 2 GHz Oszilloskop, als Normal) um diesen Wert bezogen auf das erste Maximum getroffen ergibt sich ein Unsicherheitsintervall von 0,33 % bei 30 ns.

Tabellarische Darstellung der Messunsicherheitsbilanz am Beispiel der Messung der 7,5 A Kurvenform

Größe	Schätzwert	Halbbreit	Verteilung	Unsicherheit	Sensitivit	Unsicherheitsbeitr
X _i	Xi	a		u(x _i)	at C _i	ay w _i (y) ⁴
I _{measured}	$\frac{A_{Att} \cdot U_{Scope}}{R_{T \arg et}}$					
K _{Ip}	1	5,49 %	Normal, k=2	2,75 %	1	2,75 %
<i>K</i> _{tx}	1	0,17 %	Rechteck	$\frac{0,17 \%}{\sqrt{3}}$	1	0,10 %
K _{10%}	1	0,33 %	Rechteck	$\frac{0,33\%}{\sqrt{3}}$	1	0,17 %
$I_{\Delta t}$	Standardunsicherheit			$w(I_P) = \sqrt{\sum_{i=1}^N c_i^2 v}$	$v_i^2(I_p)$	2,75 %
	rel. erweiter	te Messunsio	cherheit (k=2)	$W(y) = k \cdot w$	(y)	5,5 %

³ Dies gilt unter der Annahme, dass die Steilheit des Stromstärkeverlaufs flach genug ist, so dass sich die Unsicherheit der Zeitunschärfe maximal mit einer Sensitivität von 1:1 auf die Stromstärkemessung abbildet.
⁴ relative Beiträge werden mit *w* referenziert; absolute Beiträge mit *u*

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF	von: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von	17
	am: s.DMS	am: s. DMS	pulsförmigen EMV -Messgrößen	

esz AG calibration & metrology Qualitätsmanagement-Handbuch

XXIV.2.6 Ergebnisse

Messgröße / Kalibriergegenstand	Messbere	eich / N	lessspanne	Messbedingungen / Verfahren	kleinste angebbare Messunsicherheit	Bemerkungen
ESD-Generatoren Anstiegszeit t, der Spitzenstromstärke	300 ps	bis	3 ns	EN 61000-4-2:2009 ISO 10605:2008	$3\% \cdot t_r + 40 \text{ ps}$	
Entladestromstärke I	0,1 A	bis	35 A		4,3 % · <i>I</i> + 0,15 A	

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	18

XXIV.3 Kalibrierung von Surge- und Stoßspannungsgeneratoren

Siehe auch AA0246

Die Kalibrierung beinhaltet die Kurvenformparameter der Leerlaufspannung und der Kurzschlussstromstärke, z.B. gemäß EN 610004-5 oder EN 60060-1 (bzw. VDE 0432-1 bzw. IEC 60-1). Diese Parameter werden zunächst ungekoppelt, am sog. HV-Ausgang der Geräte kalibriert, bevor eine Aussage über die gekoppelten Eigenschaften z.B. über ein eingebautes oder externes Koppelnetzwerk zur Kopplung der Stoßspannungen z.B. auf Netzversorgungsleitungen getroffen wird (s.a. AA0244 – Kalibrierumfang von Surge- und Stoßspannungsgeneratoren).

XXIV.3.1 Leerlaufspannung

Die Eigenschaften der Leerlaufspannungsimpulsform werden über einen differentiellen Hochspannungsteiler (z.B. testec TT-SI 9010A) ausreichender Bandbreite (70 MHz) an einem Oszilloskop kalibriert. Alternativ kann auch ein Standardteiler (z.B. Tektronix P6015) verwendet werden, sofern Oszilloskop und Teiler dann über einen Trenntrafo betrieben werden. Dies schließt die Gefahr von Hochspannungsverletzungen v.a. bei negativen Pulsen aus. Das Teilerverhältnis des Messsystems muss bei der Anwendung korrigiert werden (vgl. DIN EN 61000-4-5:2014-F-4.3). Dies erfolgt idealerweise durch Einmessen des Setups an einer bekannten DC- oder NF-Quelle genau unter den Einstellungen (Deltamessung, Kanal, Vertikalverstärkung/ Gain, Offset, y-Position) unter denen im weiteren Verlauf der Kalibrierung die Messung am Stoßspannungsgenerator erfolgt. Hilfsweise können Daten aus dem Kalibrierschein des Messsystems gewonnen werden, sofern diese hinreichend stabil sind, bzw. deren Drift bekannt ist. Erfolgt keine Korrektion des Messaufbaus, so ist dies durch entsprechende Messunsicherheitsanteile zu berücksichtigen.

Einmessen des Setups am Kalibrator unter Verwendungsbedingungen

Surgegenerator DUT

Messleitung möglichst verdrillt,

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	19

Bestimmung der Leerlaufstoßspannung des Messobjektes (DUT)

XXIV.3.2 Kurzschlussstromstärke

Die Kurzschlussstromstärke und deren Parameter werden an einem passenden HF-Zangenstromwandler mit angeschlossenem Verstärker (z.B. Tektronix CT-5 / AM 503B / A6302) am Oszilloskop gemessen⁵, wobei eine -3 dB-Bandbreite >20 MHz als ausreichend gilt. Über die nominelle Generatorimpedanz R_{Gen} (i.d.R. 2 Ω) errechnet sich die Kurzschlussstromstärke I_{Gen} aus dem eingestellten Prüfschärfepegel U_{Gen} zu

$$I_{Gen} = \frac{U_{Gen}}{R_{Gen}} = \frac{U_{Gen}}{2\,\Omega}$$

Zangenstromwandler 1:1000

Messaufbau mit passivem Zangenstromwandler und aktivem Messverstärker

Messaufbau mit passivem Zangenstromwandler und Dämpfungsgliedersatz

XXIV.3.3 Messunsicherheit

XXIV.3.3.1 Stirnzeiten

Die Modelle für die Anstiegszeitmessung sind QMH IX.3.2 und IX 3.3 zu entnehmen und können für die Stirnzeitkalibrierung verwendet werden. Dabei wird angenommen, dass die Kette aus Teiler und Verstärker aufgrund der begrenzten Bandbreite den wesentlichen Einfluss auf die Systemanstiegszeit darstellt. Mit diesen Systemanstiegszeiten von ≤ 5 ns für die Stirnzeit $t_{r,Us}$ der Spannung U_s und ≤ 18 ns für die Stirnzeit tr,Is der Stromstärke Is ergeben sich ohne deren Korrektion

⁵ Für eine erdfreie Messung ist es erforderlich Oszilloskop und Verstärker galvanisch getrennt an einem Trenntransformator zu betreiben.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	20

 $U(t_{r,Us}) = 3 \% \cdot t_{r,Us} + 1 ns$ im Bereich von Messwerten größer 15 ns bzw. $U(t_{r,Is}) = 3 \% \cdot t_{r,Is} + 2 ns$ im Bereich von Messwerten größer 100 ns

(siehe XL-Tabelle "Messunsicherheiten Tabelle IX Anstiegszeit.xls")

XXIV.3.3.2 Scheitelwert der Leerlaufpannung bzw. Kurzschlussstromstärke Die Modellgleichung kann als ein Produktmodell dargestellt werden

$$S_{Gen} = S_{measured} \cdot K_{nominal} \cdot K_{Drift} \cdot K_{Lin} \cdot K_{cal} [\cdot K_{Attenuator}] \cdot K_{rep} \cdot K_{HF}$$
$$S_{measured} = A_{probe} \cdot U_{Scope}$$

Dabei sind

S_{Gen} gesuchter Scheitelwert der Leerlaufspannung bzw. Kurzschlussstromstärke

U_{Scope} gemessene Spannung am Oszilloskop

A_{probe} Empfindlichkeit des Strom- oder Spannungsteilers mit dem angeschlossenem Verstärker, z.B. 1000 V/ 1 V oder 1000 A/ 10 mV.

Die Empfindlichkeit (Teilerverhältnis) des Spannungsteilers muss für eine verlässliche Messung vor der Kalibrierung z. B. an einem AC/DC-Kalibrator bestimmt werden oder wird hilfsweise dem Kalibrierschein entnommen. In beiden Fällen muss der Korrektionsfaktor genau unter den jeweiligen Einsatzbedingungen (wie z. B. Vertikalablenkung und möglichst auch Offseteinstellung am Oszilloskop) bestimmt werden. Für jeden Arbeitspunkt ergibt sich somit mindestens ein eigener Korrektionsfaktor, der sich bspw. aus dem Verhältnis aus bekannter Eingangsspannung zur Anzeige des Oszilloskops ergibt oder als (linearer) Trend daraus bestimmt werden kann, sofern die Linearitätsabweichung klein genug ist (siehe Einflussgröße K_{Lin}). Für Arbeitspunkte >2,8 kV ist es dabei zulässig lediglich für die verwendete Verstärkereinstellung (Anzeigebereich des Oszilloskops) einen gemeinsamen Korrektionsfaktor zu verwenden, da in der Praxis die verwendete Messspannung zum Einmessen 1 kV (RMS, entspricht 2,8 kV Spitze-Spitze) beträgt. Die zusätzliche Linearitätsabweichung wir dann durch en Einfluss K_{Lin} beschrieben, der dann v.a. für die Anzeigebereiche 1 kV/Div und 2 kV/Div am Oszilloskop von besonderer Bedeutung ist.

Die Empfindlichkeit des Stromwandlers am Oszilloskop kann bspw. durch Vergleich mit induktionsarmen AC/DC-Transfershunts (extern rückgeführte SIQ MU-Serie, baugleich Fluke A40B) bestimmt werden. Es hat sich gezeigt, dass für den Messaufbau aufgrund von möglichen Frequenzgangüberhöhungen eine (zusätzliche) Empfindlichkeitskorrektion bzw. Frequenzgangkorrektion gegenüber des DC- bzw. 1 kHz-Teilerverhältnisses v. a. bei der informationstragenden Frequenz des Stromstärkeimpulses (25 kHz) benötigt wird. Wie beim Spannungsteiler muss zum Erreichen der kleinsten angebbaren Messunsicherheit für jeden Arbeitspunkt, ein individueller Korrektionsfaktor unmittelbar vor der Messung bestimmt werden (Einkalibrierung), der sich aus DC- (CT-5) bzw. 1 kHz-Korrektion (Pearson 411) des passiven Glieds $A_{Divider}$, der Korrektion der aktiven Verstärkung $A_{vertical}$ möglichst am verwendeten Arbeitspunkt, ggf. der Dämpfungskorrektion nachgeschalteter Dämpfungsglieder $A_{Attenuator}$ und relativer Frequenzgangkorrektion $A_{Flatness}$ zusammensetzt: Die dazu nötigen Spitzenstromstärken, werden durch DC- oder Sinus-Wirkstromstärken (RMS-Werte) dargestellt.

Beispiel für den Teiler Pearson 411, Spitzenstromstärke 2 kA (Arbeitspunkt):

passiver Teilungsfaktor, Bestimmung z.B. im mittleren Bereich zwischen ca. 30 % bis 90 % RMS-Aussteuerung; an AC/DC Kalibrator und Digitalmultimeter bei 1 kHz:

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF	von: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von	21
	am: s.DMS	am: s. DMS	puistormigen ⊨MV -Messgrößen	

Daraus ergibt sich $A_{Divider} = 0,997 \cdot 20 \text{ A/V}$

Am 50 Ω Eingang des Oszilloskops befindet sich das Scope für Darstellung des Arbeitspunkts 2 kA in der Einstellung 200 mV/ Div, Offset ca. 450 mV, Measurement Amplitude, Aussteuerung 1 V Spitze-Spitze. Der vertikale Korrektionsfaktor wird durch einen Funktionsgenerator bei 1 kHz und bei der signaltheoretisch relvanten Frequenz (25 kHz) bestimmt

Daraus ergibt sich bei 1 V die Korrektion $A_{vertical} = 0,985$

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	22

Daraus ergibt sich bei 25 kHz die Korrektion $A_{Flatness} = 0,987$

Die Berücksichtigung der Dämpfungsgliedkombination am Arbeitspunkt (drei Dämpfungsglieder x2; x5; x10) ergibt eine Korrektion von 19,98 dB + 13,96 dB + 5,99 dB = 39,93 dB, entspricht $A_{Attenuator}$ = 99,20

 $A_{Probe} = A_{Divider} \cdot A_{vertical} \cdot A_{Flatness} \cdot A_{Attenuator}$

 $= 0.997 \cdot 20 \text{ A/V} \cdot 0.985 \cdot 0.987 \cdot 99.20 = 1923 \text{ A/V}$

Höhere Stromstärken können gemäß Abs. XIX an Leitungswicklungen entsprechender Windungszahl generiert werden. Das Verhalten des Wandlers Pearson 411 am Arbeitspunkt des Oszilloskops wird ohne die nachgeschalteten Dämpfungsglieder bestimmt.

- *U*_{Scope} Gemessene Spannung am Oszilloskop. Durch Einstellung des passenden Teilungsfaktors kann die Ablesung bereits in der Eingangsgrößenordnung erfolgen
- $K_{nominal}$ Einfluss des vertikalen Messbereichs des Oszilloskops und des Teilers (nominelle Abweichung des Teilers). Dieser Wert ist aus der Kalibrierung des Oszilloskops zusammen mit dem angeschlossenem Teiler bekannt. Er schließt die vertikale Abweichung, Teiler- und Verstärkerabweichung im Niederfrequenzbereich ein. Wird die Abweichung korrigiert, so wird die durch die Wiederholbarkeit, Streuung oder Wiederherstellung der Bezugsbedingungen der Messwerte (v.a. Offset-Einstellung am Oszilloskop) beim Einmessen entstehende Abweichung in einem Intervall von maximal ± 1 % für den Spannungsteiler und den Stromteiler Pearson 411 angenommen.

Bei Verwendung des Stromteilers Tektronix CT-5 bzw. gilt eine konservative Annahme innerhalb der Grenzen von ± 2 %: Letztere berücksichtigt mögliche Lageabhängigkeiten, die durch das Streufeld des Leiters hervorgerufen werden.

Wird keine Teilerkorrektion verwendet, so wird durch die Auswertung zurückliegender Kalibrierscheine und Kontrollmessungen angenommen, dass die durch die Teilung und Vertikalverstärkung (Abweichung vom Nominalwert) entstehende Abweichung in einem Intervall von maximal ±5 % liegt.

 K_{Drift} Bei Verwendung des nominellen Teilerverhältnisses ist dieser Anteil bereits in der Einflussgröße $K_{nominal}$ enthalten. Wird der letzte bekannte Teilerfaktor aus dem Kalibrierschein verwendet, so ist eine mögliche Veränderung seit der letzten Kalibrierung zu berücksichtigen, die aus den Auswertungen der Kalibrierscheine 034760-01 bis -05 je Messschritt durchschnittlich $\leq 1 \%$ für den Spannungsteiler, bzw. gemäß Auswertung 000792-02 und -03 ca. $\leq 2 \%$ für den Stromteilerverbund Tektronix CT-5 liegt. Diese Werte werden dann als Grenze eines normalverteilten Unsicherheitsintervalls angenommen.

Für einen passiven Teiler wie Pearson 411 wird angenommen, dass die Drift des Teilerverhältnisses gemäß Datenblatt in jedem Fall ≤1 % sein wird (Grenze einer Rechteckverteilung).

*K*_{Lin} Die relative Nichtlinearität des Spannungsteilers bei Deltamessungen einschließlich der Wirkung unterschiedlicher Einstellungen des Offsets und des angeschlossenen Oszilloskops wurde durch Messreihen und Auswertung der Kalibrierscheine besser als 2 % bestimmt. Dieser Einfluss ist nur bei Verwendung eines Korrektionsfaktors zu berücksichtigen. Bei Wirkung einer unbekannten unkorrigierten Nominalabweichung innerhalb der o.g. Grenzen schließen diese eine mögliche Abweichung durch Linearitätsfehler und unterschiedliche Offseteinstellungen bereits ein.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	23

Abschätzung der Nichtlinearität im Anzeigebereich, der in der Praxis nicht direkt substituiert wird

Abschätzung des worst-case Offseteinflusses mit Spannungsteiler

*K*_{*HF*} Die -3 dB-Bandbreite *B* der Teiler wird aus den Herstellerangaben und Testmessungen deutlich größer als 200 kHz geschätzt. Gemäß DIN EN 61000-4-5:2014-F.4.7 GI. F.8 wird die dadurch entstehende Verzerrung der Impulsamplitude aufgrund der begrenzten Bandbreite des Messsystems damit kleiner als 1 % sein.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	24

Empfindlichkeit der Stromwandler in Abhängigkeit der Frequenz

Kontrollmessung des Frequenzganges des Spannungsteilers

- K_{cal} Die Kalibrierunsicherheit bei DC bzw. im Niederfrequenzbereich der Teiler liegt in jedem Fall unter 0,5 %
- *K*_{Attenuator} Wird ein "passiver" Aufbau verwendet (z.B. mit Pearson Stromwandler wie Modell 411) so muss am Ausgang ggf. ein oder mehrere HF-Dämpfungsglieder hoher Bandbreite (≥400 MHz) verwendet werden, deren Teilerverhältnisse besser als 1 % bestimmt werden kann.
- *K_{Rep}* Die Wiederholbarkeit ist vom Messobjekt abhängig. Die mittlere Wiederholbarkeit liegt typisch bei 0,8 %.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF	von: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von	25
	am: s.DMS	am: s. DMS	pulsförmigen EMV -Messgrößen	

Größe	Schätzwert	Halbbreit	Verteilung	Unsicherheit	Sensitivit	Unsicherheitsbeitr
X,	X	e		$u(\mathbf{x}_i)$	ai C:	ay
	~	а			1011	w_i(y) ⁶
$S_{measured}$	$A_{\it probe} \cdot U_{\it Scope}$					
K _{nominal}	1	1 %	Rechteck	$\frac{1\%}{\sqrt{3}}$	1	0,58 %
K _{nominal} (unkorrigiert)	1	5 %	Rechteck	$\frac{5\%}{\sqrt{3}}$	1	2,89 %
K _{Drift}	1	1 % Normal		1%	1	1,0 %
K _{Lin}	1	2 %	Rechteck	$\frac{2\%}{\sqrt{3}}$	1	1,15 %
K _{HF}	1	1 %	Rechteck	$\frac{1\%}{\sqrt{3}}$	1	0,58 %
K _{cal}	1	0,5 %	Normal, k=2	$\frac{0,5 \%}{2}$	1	0,25 %
K _{Rep}	1	0,8 %	Normal	0,8 %	1	0,80 %
	Standardunsicherheit (eingemessener Teiler)			$w(S_{Gen}) = \sqrt{\sum_{i=1}^{N} c_i^2}$	$w_i^2(S_{Gen})$	1,6 %
S_{Gen}	rel. erweiterte einge	e Messunsic emessener T	herheit (k=2) ⁻ eiler			3,3 %
	Verwendung des Teilerverhältnisses aus dem letzten Kalibrierschein			$W(y) = k \cdot v$	w(y)	3,8 %
	Verwend Tei	dung des nor lerverhältnis	minellen ses			6,1 %

Tabellarische Messunsicherheitsbilanz, Leerlaufspannung, testec TT Si-9010, 1:1000

⁶ relative Beiträge werden mit *w* referenziert; absolute Beiträge mit *u*

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	26

esz AG calibration & metrology Qualitätsmanagement-Handbuch

Größe	Schätzwert	Halbbreit	Verteilung	Unsicherheit	Sensitivit	Unsicherheitsbeitr
X		е			ät	ag
Xi	Xi	а		<i>u(x_i)</i>	C i	<i>w_i(y)</i>
S _{measured}	$A_{\it probe} \cdot U_{\it Scope}$					
K _{nominal}	1	2 %	Rechteck	$\frac{2\%}{\sqrt{3}}$	1	1,15 %
K _{nominal} (unkorrigiert)	1	5 %	Rechteck	$\frac{5\%}{\sqrt{3}}$	1	2,9 %
K _{Drift}	1	2 %	Normal	2 %	1	2,0 %
K _{Lin}	1	2 %	Rechteck	$\frac{2\%}{\sqrt{3}}$	1	1,15 %
K _{HF}	1	1 %	Rechteck	$\frac{1\%}{\sqrt{3}}$	1	0,58 %
K _{cal}	1	0,5 %	Normal, k=2	$\frac{0,5\ \%}{2}$	1	0,25 %
K _{Rep}	1	0,8 %	Normal	0,8 %	1	0,80 %
	Stan	dardunsiche	rheit	$w(S_{Gen}) = \sqrt{\sum_{i=1}^{N} c_i^2}$	$w_i^2(S_{Gen})$	1,9 %
S _{Gen}	rel. erweiterte einge	e Messunsic emessener T	herheit (k=2) eiler			3,8 %
	Verwendung c dem let	les Teilerver zten Kalibrie	hältnisses aus rschein	$W(y) = k \cdot v$	v(y)	5,6 %
	Verwend Tei	dung des nor Ierverhältnis	minellen ses			6,1 %

Tabellarische Messunsicherheitsbilanz, Kurzschlussspannung, Tektronix CT-5, 1:1000

Tabellarische Messunsicherheitsbilanz, Kurzschlussstromstärke, Pearson 411, 0,1 V/A

Größe	Schätzwert	Halbbreit	Verteilung	Unsicherheit	Sensitivit	Unsicherheitsbeitr
X _i	Xi	a		u(x _i)	C _i	ay w _i (y)
S _{measured}	$A_{probe} \cdot U_{Scope}$					
K _{nominal}	1	1 %	Rechteck	$\frac{1\%}{\sqrt{3}}$	1	0,58 %
K _{nominal} (unkorrigiert)	1	5 %	Rechteck	$\frac{5\%}{\sqrt{3}}$	1	2,9 %
K _{Drift}	1	1 %	Rechteck	$\frac{1\%}{\sqrt{3}}$	1	0,58 %
K _{Lin}	1	2 %	Rechteck	$\frac{2\%}{\sqrt{3}}$	1	1,15 %
K _{HF}	1	1 %	Rechteck	$\frac{1\%}{\sqrt{3}}$	1	0,58 %

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	27

esz AG calibration & metrology

Qualitätsmanagement-Handbuch

Größe	Schätzwert	Schätzwert Halbbreit Verteilung e		Unsicherheit	Sensitivit ät	Unsicherheitsbeitr ag
Xi	Xi	а		u(x _i)	C _i	w _i (y)
<i>K</i> _{cal}	1	0,5 %	Normal, k=2	$\frac{0,5 \%}{2}$	1	0,25 %
K _{Attenuator}	1	1 1%		$\frac{1\%}{\sqrt{3}}$	1	0,58 %
K _{Rep}	1	0,8 %	Normal	0,8 %	1	0,80 %
	Stan	dardunsiche	rheit	$w(S_{Gen}) = \sqrt{\sum_{i=1}^{N} c_i^2}$	$w_i^2(S_{Gen})$	1,7 %
S_{Gen}	rel. erweitert einge	e Messunsic emessener T	herheit (k=2) ⁻ eiler			3,5 %
	Verwendung o dem let	les Teilerver zten Kalibrie	hältnisses aus rschein	$W(y) = k \cdot v$	<i>v</i> (<i>y</i>)	3,7 %
	Verwend Tei	dung des nor lerverhältnis:	minellen ses		6,2 %	

XXIV.3.3.3 Rückenhalbwertszeiten

Das Modell zur Zeitintervallmessung an einem Oszilloskop kann Kapitel IX.3.1 entnommen werden. An einem typischen Oszilloskop (z.B. 500 MHz, 2 GS/s) ergeben sich im Wesentlichen durch die Cursorunschärfe beeinflusst Messunsicherheiten besser als 0,6 %. Hinzu kommen Unsicherheitsbeiträge für die Erfassung des "Ursprungs" und des 50%-Wertes der Kurvenform.

$$t_{Gen} = t_{measured} \cdot K_{scope} \cdot K_O \cdot K_{50\%}$$

tgen gesuchte Rückenhalbwertszeit

t_{measured} gemessene Rückenhalbwertszeit

- K_{scope} Einfluss des Oszilloskops als Normal, besser als 0,6 % für Messwerte größer oder gleich 50 ns (100 ps / 30 ns) etwa 0,3 %
- *K*₀ Einfluss der Unschärfe bei der Bestimmung des Ursprungs O der Kurvenform. An der ansteigenden Flanke der Signale sollte dieser bei ausreichender Auflösung deutlich besser als die Hälfte der Stirnzeit oder 1,2 % bestimmbar sein.
- $K_{50\%}$ Einfluss der Bestimmung des 50 %-Wertes des Kurvenverlaufs, dieses Intervall ist im schlechtesten Fall so groß wie die Unsicherheit der Scheitelwertbestimmung, unabhängig vom verwendeten Teiler jedoch immer kleiner 4 $\%^7$

Tabellarische Darstellung der Messunsicherheitsbilanz, Rückenhalbwertszeit

Größe	Schätzwert	Halbbreit	Verteilung	Unsicherheit	Sensitivit	Unsicherheitsbeitr
		е			ät	ag
Xi	Xi			<i>u(x_i)</i>	C i	w (v) ⁸
		a				$W_i(y)$

⁷ Dies gilt unter der Annahme, dass die Steilheit des Kurvenverlaufs flach genug ist, so dass sich die Unsicherheit der Spitzenwert- bzw. 50 %-Unschärfe maximal mit einer Sensitivität von 1:1 auf die Zeitmessung abbildet.

⁸ relative Beiträge werden mit *w* referenziert; absolute Beiträge mit *u*

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	28

esz AG calibration & metrology Qualitätsmanagement-Handbuch

Größe	Schätzwert	Halbbreit e	Verteilung	Unsicherheit	Sensitivit ät	Unsicherheitsbeitr ag
Xi	Xi	а		u(x _i)	C i	w_i(y) ⁸
$t_{measured}$						
Kscope	1	0,6 %	Normal, k=2	$\frac{0.6\ \%}{2}$	1	0,3 %
K_O	1	1,2 %	Rechteck	$\frac{1,2\%}{\sqrt{3}}$	1	0,69 %
$K_{50\%}$	1	4 %	Normal, k=2	$\frac{4\%}{2}$	1	2,0 %
$I_{\Delta t}$	Star	ndardunsiche	erheit	$w(I_P) = \sqrt{\sum_{i=1}^N c_i^2 v}$	$v_i^2(I_P)$	2,14 %
	rel. erweiter	te Messunsio	cherheit (k=2)	$W(y) = k \cdot w$	(y)	4,67 %

XXIV.3.4 Ergebnisse

Messgröße / Kalibriergegenstand	Messbere	eich / N	lessspanne	Messbedingungen / Verfahren	kleinste angebbare Messunsicherheit	Bemerkungen
Stoßspannungsgener atoren						
Stirnzeit <i>t_{r,Us}</i> der Leerlaufspannung	15 ns	bis	100 ms		$3 \% \cdot t_{r,Us} + 1 \text{ ns}$	
Stirnzeit <i>t_{r.Is}</i> der Kurzschlussstroms tärke	100 ns	bis	100 ms		$3\% \cdot t_{r,Is} + 2$ ns	
Rückenhalbwertsz eit <i>t_H</i> der Kurvenform	0,5 µs	bis	100 ms		5 % · <i>t_H</i>	
Scheitelwert der Leerlaufspannung Us	0,1 kV	bis	7 kV		$3,3 \% \cdot U_S$	
Scheitelwert der Kurzschlussstroms tärke Is	10 A	bis	5 kA		$3,5 \% \cdot I_S$	
	>5 kA	bis	10 kA		3,8 % · <i>I</i> _S	

Ausgab	e:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23		von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	29

© esz AG, 2018

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen Bedingungen 4.0 International zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie http://creativecommons.org/licenses/by-nc-sa/4.0/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.

Ausgabe:	erstellt	geprüft/genehmigt	Kapitel	Seite
DMS.23	von: PF am: s.DMS	von: s. DMS am: s. DMS	Qualitätsmanagementhandbuch - XXIV Kalibrierung von pulsförmigen EMV -Messgrößen	30